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Abstract. An Ashkin–Teller neural network, allowing for two types of neurons is considered
in the case of low loading as a function of the strength of the respective couplings between these
neurons. The storage and retrieval of embedded patterns built from the two types of neurons,
with different degrees of (in)dependence is studied. In particular, thermodynamic properties
including the existence and stability of Mattis states are discussed. Furthermore, the dynamic
behaviour is examined by deriving flow equations for the macroscopic overlap. It is found that
for linked patterns the model shows better retrieval properties than a corresponding Hopfield
model.

1. Introduction

One of the best known physical models for neural networks is the Hopfield model [1].
In theoretical investigations of network properties, e.g. the retrieval of learned patterns, it
plays a similar role as the Ising model does in the theory of magnetism. Extensions of this
model to multistate neurons have received a lot of attention recently (see, e.g. [2–5] and
the references cited therein). Thereby the ability to store and retrieve so-called grey-toned
and coloured patterns has been investigated.

In this work we consider another extension of the Hopfield model to allow for
multifunctional neurons. The specific model we have in mind is the neural network version
of the Ashkin–Teller spin glass [6–9]. Indeed, on the one hand the Ashkin–Teller model has
two different kinds of neurons (spins) at each site interacting with each other. This allows
us to interprete this model as a neural network with two types of neurons having different
functions. On the other hand, this Ashkin–Teller neural network (ATNN) can be considered
as a model consisting of two interacting Hopfield models.

We expect the behaviour of the ATNN to be different from that of the Hopfield model
in a nontrivial way. One of the things we want to find out, e.g. is whether this (four-neuron)
interaction between the two types of neurons can improve the retrieval process for embedded
patterns built from these two types of neurons. We shall see, indeed, that for a particular
choice of this interaction term the retrieval quality of the embedded patterns is very high in
comparison with a corresponding Hopfield model. Therefore, independent of the possible
biological relevance of this model, if any, such a study is interesting from the pure physical
point of view.
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In this work we consider both the thermodynamic and dynamic properties of this model
in the case of loading of a finite number of patterns.

The rest of this paper is organized as follows. In section 2 the ATNN model is
introduced. Section 3 discusses the methods used for analysing both the equilibrium
properties and the dynamics of the model. In particular, fixed-point equations as well
as flow equations for the relevant macroscopic overlap order parameters are derived. In
section 4 numerical solutions of these equations are discussed for a representative set of
network parameters. The retrieval properties of embedded patterns with different degrees
of dependences are compared. Section 5 presents the main conclusions.

2. The model

We consider a network ofN sites. At each site we have two different types of binary
neurons,si andσi , i = 1, . . . , N . The two types of neurons interact via a four-neuron term
sisjσiσj . The infinite-range Hamiltonian reads

H = − 1
2

∑
i,j

[J (1)ij sisj + J (2)ij σiσj + J (3)ij sisjσiσj ]. (1)

In this network we wish to store a finite number of patterns,p, also of two different
types, i.e.ξi = {ξµi }, µ = 1, . . . , p andηi = {ηνi }, ν = 1, . . . , p, which are supposed to be
independent identically distributed random variables (i.i.d.r.v.) taking the values+1 or−1
with probability 1

2. To build in the capacity for learning and retrieval in this network its
stable configurations must be correlated with the configurations determined by the learning
process. This can be accomplished by taking the Hebb learning rule for the interactions

J
(1)
ij =

1

N
J1

p∑
µ=1

ξ
µ

i ξ
µ

j J
(2)
ij =

1

N
J1

p∑
µ=1

η
µ

i η
µ

j J
(3)
ij =

1

N
J3

p∑
µ=1

γ
µ

i γ
µ

j (2)

where theγ i = {γ µi }, µ = 1, . . . , p are also i.i.d.r.v. taking the values+1 or −1 with
probability 1

2.
At this point some remarks are in order. First, we have taken the strength of the two

types of patterns to be equal, meaning that the ATNN model is isotropic. Second, it is clear
that the behaviour of this model (1), (2) might depend on whether theγ are taken to be
independent from theξ and theη or not. The following cases will be distinguished:

(1) unlinked patterns
(a) ξi ,ηi andγi are i.i.d.r.v.
(b) ξi = ηi andγi are i.i.d.r.v.
(c) ξi = ηi = γi is i.i.d.r.v.
(2) linked patterns

γ
µ

i = ξµi ηµi with ξi andηi are i.i.d.r.v.
We note that this ATNN model can also be considered as an assembly of two single

Hopfield models (whenJ3 = 0), one in the si-neurons and one in theσi-neurons
interconnected via a four-neuron interaction (whenJ3 6= 0). The study of coupled Hopfield
networks has aroused some interest in the literature before (e.g. [10]).

In the following we discuss both the thermodynamics and the dynamics of this ATNN
neural network with low loading.
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3. The method

3.1. Statics

Starting from the Hamiltonian (1), (2) and applying standard techniques (linearization and
the saddle-point method [11, 12]) the ensemble-averaged free energy is given by

f = 1
2(J1m

2
1+ J1m

2
2+ J3m

2
3)

− 1

β
〈〈ln[4 coshβL1 coshβL2 coshβL3(1+ tanhβL1 tanhβL2 tanhβL3)]〉〉

(3)

with

L1 = J1ξ ·m1 L2 = J1η ·m2 L3 = J3γ ·m3. (4)

In the above the double brackets〈〈·〉〉 denote the average over the distribution of the
embedded patterns. Themα = {mµα }, µ = 1, . . . , p; α = 1, 2, 3 are, as usual, overlap
order parameters defined by

m1 = 1

N

N∑
i=1

ξi si m2 = 1

N

N∑
i=1

ηiσi m3 = 1

N

N∑
i=1

γi siσi . (5)

Here we remark that in the thermodynamic limitN →∞ and for finite loadingα = 0 the
diagonal terms in the couplings,Jii , do not play any role in the Hamiltonian (1).

In fact our model can be considered as a special case of the general spin-glass model
presented in [8] such that the expressions (3), (4) can also be read off from there.

The fixed-point equations for the order parameters read

mα =
〈〈
ψα(tanhβLα + tanhβLν tanhβLρ)

1+ tanhβLα tanhβLν tanhβLρ

〉〉
(6)

whereα, ν, ρ = 1, 2, 3 are taken to be different and whereψα is the embedded pattern
corresponding tomα.

Since the study of this ATNN model is very involved we have restricted ourselves here
to a detailed treatment of the Mattis states [12] which are especially important from a neural
network point of view. In our case they are defined as those solutions of the fixed-point
equations for which not more than one component of each order parameter is different from
zero, e.g.m1 = m1(1, 0, . . . ,0), m2 = m2(1, 0, . . . ,0), m3 = m3(1, 0, . . . ,0). These
states are denoted bym1m2m3 in the following. We will see that those states are the only
ones which contribute to the thermodynamics of the system. Solutions with more than one
component being nonzero, i.e. mixture states will be important for the dynamics if they are
local minima of the free energy.

For zero temperature we note that the equations (6) can be simplified by replacing the
tanhβLα by signLα. Then it is straightforward to show that for each order parameter

(mα)
2 6 1 α = 1, 2, 3 (7)

with the equality being satisfied for a one-componentmα, and that the ground-state energy
is given by

E = −
3∑
α=1

1
2m

2
α. (8)

In section 4 we report on the existence and stability of these Mattis states as a function of
the temperature.
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3.2. Dynamics

The analysis outlined above enables us to find the local minima of the free energy, but in
order to find out how an arbitrary initial state of the network changes in time and to what
extent, if at all, one of the learned patterns is approached, we derive a flow equation for the
overlap order parameters.

We consider sequential updating of the spins consistent with the detailed balance
condition. Hence we choose the following transition probabilities for a spin–flip at a certain
time step

ω1(si, σi) ≡ ω(si →−si) = 1
12[1− tanh(β(sih

(1)
i + siσih(3)i ))]

ω2(si, σi) ≡ ω(σi →−σi) = 1
12[1− tanh(β(σih

(2)
i + siσih(3)i ))]

ω3(si, σi) ≡ ω(si →−si, σi →−σi) = 1
12[1− tanh(β(sih

(1)
i + σih(2)i ))]

(9)

with thehi appropriate local fields acting on the neurons in the following way

h
(1)
i =

J1

N

∑
j

∑
µ

ξ
µ

i ξ
µ

j sj h
(2)
i =

J2

N

∑
j

∑
µ

η
µ

i η
µ

j σj h
(3)
i =

J3

N

∑
j

∑
µ

γ
µ

i γ
µ

j sjσj

(10)

where, as in the treatment of the statics we takeJ1 = J2. At this point we remark that in
the thermodynamic limitN →∞ the diagonal terms in the couplings,Jii , do not survive.
Furthermore we note that the method used here is also valid in the case of unequalJ .

We then consider the probabilityp(s,σ; t) that the system is in a states = (si, . . . , sN),
σ = (σ1, . . . , σN) at time t . It satisfies the master equation

∂p(s,σ; t)
∂t

=
N∑
i=1

{ω1(F
1
i si , σi)p(F

1
i {s,σ}; t)+ ω2(si, F

2
i σi)p(F

2
i {s,σ}; t)

+ω3(F
3
i si , F

3
i σi)p(F

3
i {s,σ}; t)

−p(s,σ; t)[ω1(si, σi)+ ω2(si, σi)+ ω3(si, σi)]}. (11)

The operatorFνi , ν = 1, 2, 3 acting on a configuration{s,σ} changes the sign of the
following spins: si for ν = 1, σi for ν = 2 and simultaneouslysi andσi for ν = 3.

From this we wish to derive a flow equation for the overlap order parameters. Because of
the multistate character of the model (owing to the four-spin interaction term) the summation
over i has to be carried out by generalizing the method of submagnetizations or suboverlaps
connected with partitions of the network with respect to the built-in patterns [13, 14]. We
note that for Hopfield networks we do not need such a partitioning [15].

First we introduce the following division of the network indices

{i 6 N} =
⋃
k

Ik Ik = {i 6 N;k = ki} ki = (ξi ,ηi ,γi ). (12)

Then we define the so-called submagnetizations or suboverlaps

µα,k(s,σ) = 1

|Ik|
∑
i∈Ik

Sα,i α = 1, 2, 3, S1,i = si, S2,i = σi, S3,i = siσi (13)

which enables us to write the overlaps in the form

mνα =
∑
k

|Ik|
N
µα,kk

(α−1)p+ν α = 1, 2, 3, ν = 1, . . . , p (14)

where|Ik| stands for the number of indices in the setIk. The number of vectorsk is equal
to 2ap, which is much smaller than the numberN of sitesi (whenN →∞). The coefficient
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a = 3, 2, 1 and 2 for patterns of type 1(a), 1(b), 1(c) and 2 respectively. So, an embedded
random pattern configuration can be assumed to be equally distributed over the setsIk such
that |Ik| = 2−apN +O(N1/2).

Next we write down the probabilityP(µ; t) that the system is in a macroscopic state
described by a set of submagnetizationsµ(s,σ) ≡ {µα,k}

P(µ; t) =
∑
{s,σ}

p(s,σ; t)δ(µ− µ(s,σ)). (15)

Then we arrive at the following master equation (cf equation (11))

∂P (µ; t)
∂t

=
∑
{s,σ}

∑
i

∑
ν

ων(si, σi)pt (s,σ)[δ(µ− µ(F νi {s,σ}))− δ(µ− µ(s,σ))]. (16)

The action of the operatorFνi can be specified further by writing

µ(F νi {s,σ}) = µ(s,σ)−Rν(si, σi). (17)

It is then straightforward to check that certain elements of the matrix [Rν(si, σi)]α,k are
zero, namely

R1
2,k = R2

1,k = R3
3,k = 0 ∀k, i 6 N. (18)

Furthermore, forν andα different from these specific values in (18) we have

Rνα,k =
2

|Ik|Sα,i if i ∈ Ik (19)

Rνα,k = 0 if i 6∈ Ik. (20)

In the thermodynamic limitN → ∞ the parametersµ become continuous variables.
Following [13] we then write for an arbitrary smooth functionφ(µ)

∂〈φ(t)〉
∂t

≡
∫

dµφ(µ)
∂P (µ; t)
∂t

=
∑
{s,σ}

∑
i

∑
ν

∫
dµ′p(s,σ; t)δ(µ′ − µ(s,σ))ων(si, σi)

×[φ(µ′ −Rν(si, σi))− φ(µ′)]. (21)

Making an expansion ofφ aroundµ′ and doing a partial integration with respect toµ′ we
arrive at

∂〈φ(t)〉
∂t

=
∫

dµ′ φ(µ′)
∑
α,k

∂

∂µ′α,k

(∑
{s,σ}

∑
i

∑
ν

p(s,σ; t)δ(µ′ − µ(s,σ))

×Rνα,k(si, σi)ων(si, σi)
)
+O(N−1). (22)

We remark that until now we have not used the specific form for the transition
probabilities ων . Other expressions forων , satisfying detailed balance could also be
employed.

Using the partitioning of the network into subsetsIk we can replace the sum overi by∑
k

∑
i∈Ik . Employing the specific form (9) forων and performing the sum over{s,σ} we

arrive at (cf [13])

∂〈φ〉t
∂t
=
∫

dµφ(µ)
∑
α,k

∂

∂µα,k
P(µ; t)[ 1

3µα,k − fα,k({µβ,k})] (23)
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wherefα,k({µβ,k}) is a function of all the suboverlaps given by

fα,k({µβ,k}) = 1
12{tanh(βLα + βLν)+ tanh(βLα − βLν)+ tanh(βLα + βLρ)
+ tanh(βLα − βLρ)+ µν,k[tanh(βLα + βLρ)− tanh(βLα − βLρ)]
+µρ,k[tanh(βLα + βLν)− tanh(βLα − βLν)]} (24)

with theLα (α, ν, ρ = 1, 2, 3 and different from each other) given by equation (4). Since
this equation holds for every smooth functionφ the equation for the probabilitiesP(µ; t)
has the form

∂P (µ; t)
∂t

=
∑
α,k

∂

∂µα,k
P(µ; t)[ 1

3µα,k − fα,k({µβ,k})] (25)

and the corresponding flow equations for the submagnetizationsµα,k themselves read

∂µα,k

∂t
= − 1

3µα,k + fα,k({µβ,k}). (26)

Together with (14) these coupled equations are used to study the dynamic behaviour of
the network. In the following section the results of this study are discussed.

4. Results

In this section we discuss the numerical results for the ATNN model obtained from the
fixed-point equations specifying the thermodynamic properties and from the flow equations
for the suboverlaps describing the dynamics. We treat the cases of linked patterns and
unlinked patterns separately. We report the results for a set of representative examples
illustrating the main new features of the model.

4.1. Unlinked patterns

We first consider the model with equal coupling parametersJ3 = J1(= J2) = 1. Introducing
Mattis-type statesm1m2m3 into the fixed-point equations (6) we obtain the same equations
for mα, α = 1, 2, 3 irrespective of the degree of dependence between the different types
of patterns. The solutions are presented in figure 1 where the overlap for different Mattis
states is shown as a function of the temperatureT = 1/β. A stability analysis performed by
studying the stability matrix given by Aµναβ = ∂2f

∂m
µ
α ∂m

ν
β

leads to the following main features.

Above T = 1.0 there exist no stable Mattis states. Furthermore, the (paramagnetic) state
000 where all the overlaps with the embedded patterns are zero is stable.

Below T = 1.0 we have the retrieval phase with many different forms of stable Mattis
states. We expect that the most important ones are those with the lowest energies, i.e.
the statesmmm (for temperatures in the interval(0.83, 1)) andmm0 (for temperatures in
(0, 0.83)). The statemm0 corresponds to a situation where the overlaps with a pattern in
the s-part andσ -part of the network are nonzero and equal to each other and the overlap
with a pattern in thesσ -part of the network is zero. This state is completely equivalent
to the statesm0m and 0mm, a fact resulting directly from the symmetry of the model. Its
properties are analogous to those of the Mattis states in the Hopfield model [12], since the
fixed-point equations for the overlapm are the same.

The states which have no analogues in the Hopfield model aremmm and alsomml.
The first can be interpreted as the description of retrieval of one pattern, ‘simultaneously
by thes, σ andsσ -parts of the network’ (for the case of dependent patterns, i.e. case 1(c),
this pattern is the same for the three parts). However, such a retrieval occurs with a lot of
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Figure 1. The overlaps for the Mattis states as a function of the temperatureT = 1/β for
J1 = J2 = J3 = 1. States represented by filled symbols are only present for the model with
linked patterns.

errors as can be inferred from the small values of the corresponding overlap in figure 1.
The second state, i.e.mml, which is, of course, equivalent tomlm and lmm differs from
themmm state in the fact that the nonzero overlaps with the pattern in the three different
parts of the network are not equal to each other. However, this state does not seem to
play an important role because it is never a global minimum in the set of Mattis states (see
figure 1).

Increasing the temperature toT = 1 we notice a continuous transition from the network
retrieval phase to the disordered (paramagnetic) phase.

We have also studied the local minima structure for nonequal values of the coupling
parametersJ1, J2 andJ3. It only differs in a quantitative way.

The static results found above are confirmed by a study of the dynamic behaviour of
the ATNN model using the coupled equations (26). For simplicity, we take the number
of embedded patterns of each typep = 2. Since we have three different kinds of such
patterns the results concern a six-dimensional flow. Some representative two-dimensional
projections are presented in figure 2.

As a starting point we takem2 = m3 = (0.5, 0) and different values form1. Such a
choice of initial conditions is not very specific because of the symmetry properties of the
model. It allows us to show some typical behaviour of the network. An extensive search
confirms that other initial conditions lead only to quantitatively different diagrams. We
remark that the part of the diagrams not shown explicitly is symmetric with respect to the
m1

1 or m2
1 axis.

We choose some relevant values ofT suggested by the thermodynamics. We can locate
in the first diagram of figure 2 (T = 0.1) the attractor 0mm in the lower left corner. In the
lower right (and, since there is symmetry with respect to the off-diagonal also the upper left)
corner we see the statelmm, which looks like an attractor. However, our static analysis
reveals that they are only saddle points in the full six-dimensional space. On the off-diagonal
we have a state of the formm1 = m1(1, 1), m2 = m2(1, 0) andm3 = m3(1, 0) denoted
by smm, i.e. symmetric with respect to thes-part of the network. We remark that in this
diagram some lines cross each other which is caused by the fact that only the evolution
of two order parameters is shown whereas the third order parameter,m1

2 = m1
3, is also

evolving. One could easily imagine a three-dimensional picture withm1
2 = m1

3 taken as the
third coordinate.

For increasingT the smm state is no longer present and thelmm states move along
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0 1
m1
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0
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m1

2

T=0.1

0
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T=0.8

0
m1

1

T=0.9

Figure 2. Flow diagrams for the model with unlinked patterns at several temperatures. Filled
symbols denote different states: a circle for 0mm, a diamond forlmm, a square formmm and
a triangle for the symmetric statesmm defined in the text.

them1
1-axis (respectivelym2

1-axis) until they disappear forT ≈ 0.8. For these temperatures
there is a very small difference in free energy between the various Mattis-type states. This
could be the reason that forT = 0.8 we were no longer able to detect the stateslmm which
should still exist according to the static analysis. Indeed, at this temperature the overlap for
the lmm states is almost equal to the one for themmm state (see figure 1) showing that
they are almost identical. Furthermore, forT ≈ 0.8 the statesmmm appear, move towards
the origin on them1

1-axis (respectively them2
1-axis) as seen on the diagram forT = 0.9 and

disappear forT = 1.0. From this temperature onwards, only the origin, i.e. the 000 state is
an attractor.
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4.2. Linked patterns

Next, we have analysed the model with linked patterns satisfyingγ µ = ξµηµ with ξ andη
i.i.d.r.v. and with equal coupling parametersJ3 = J1(= J2) = 1.

Introducing again Mattis-type statesm1m2m3 into the fixed-point equations (6) and
checking their stability we find that there are only two stable solutions: the retrieval state
mmm which is stable belowT = 1.213 and the paramagnetic 000 state which is stable
aboveT = 1.0. The corresponding retrieval overlap is shown in figure 1 (filled symbols).
We notice that in contrast to the model with unlinked patterns a state of the formmmm has
a much bigger overlap.

Hence, we can distinguish different phases: a retrieval phase belowT = 1.213 and a
paramagnetic phase aboveT = 1.213. We remark that the transition atT = 1.213 is first
order. In the temperature region 16 T < 1.213 both the paramagnetic and Mattis solutions
are local minima of the free energy. Such a region has also been seen in the Potts model
but not in the Hopfield model [13]. Finally, we find that Hopfield-type solutions, i.e. Mattis
states of the formm00 are (only) saddle points belowT = 1.0.

A detailed study of the flow equations (26) reveals a much more complicated local
minima structure for this model. It turns out that for the model with linked patterns we
still have to distinguish between the Mattis solutions according to the relative place of the
nonzero overlap components for the different order parameters. Consequently, we introduce
simpleMattis states where only the same components of the different order parameters are
nonzero, e.g.m1 = m1(1, 0), m2 = m2(1, 0), andm3 = m3(1, 0) for p = 2, denoted as
before bym1m2m3. For equal componentsmα these are the states we have encountered
in the thermodynamic analysis. (They are equivalent to(0, m)(0, m)(0, m) and also to
(−m, 0)(−m, 0)(m, 0).)

In addition, we definecrossed Mattis states where the same components of the
different order parameters are never nonzero, e.g.(m, 0)(0, m)(0, 0) for p = 2 and
(m, 0, 0)(0, m,0)(0, 0, m) for p = 3. At this point we remark that a state of the form
(m, 0)(0, m)(m,0) is neither simple nor crossed but of a mixed form. Forp = 2 we did
not detect the latter. The crossed states are in fact equivalent to Mattis states for a model
with unlinked patterns. This can easily be checked by introducing this type of solutions in
the fixed-point equations for the order parameters and taking appropriate averages over the
linked patterns.

Some representative flow diagrams are shown in figures 3 and 4. As before we present
only projections onto a two-dimensional space. The symmetry of the model with linked
patterns is different from the model with unlinked patterns which results in a different
symmetry of the flow diagrams. So, the remaining part of a diagram in these figures can
be obtained by a reflection of the part displayed with respect to the axism2

1 = 0.
The initial conditions for the flow diagrams of figure 3 are as follows: two identical

Mattis states withm2 = m3 = (0.5, 0). We can locate in the first diagram of figure 3
(T = 0.1) the attractormmm in the lower right corner. In the lower left corner we see the
statem00, which again looks like an attractor. However, it is only a saddle point in the full
six-dimensional space. On the top in the middle we have a state of the formm1 = (m1

1, m
2
1),

m2 = m2(1, 0) andm3 = m3(1, 0) denoted byamm, i.e. asymmetric with respect to the
s-part of the network. We remark also that any crossings of paths are caused by the fact
that the diagrams of figure 3 and also of figure 4 are projections of a higher dimensional
flow. They are not present in the full six-dimensional space.

For higherT the stateamm disappears, the statemmm stays in the lower right corner
up to T = 1 and the statem00 moves towards the origin and disappears atT = 1. Above



6328 D Bollé and P Koz lowski

�1 0 1
m1

1

0

1

m1

2

T=0.1

�1 0
m1

1

T=0.4

�1 0 1
m1

1

0

1

m1

2

T=0.7

�1 0
m1

1

T=1.2

Figure 3. Flow diagrams for the model with linked patterns at different temperatures. Filled
symbols stand for different states: a circle form00, a square formmm, a diamond for 000 and
a triangle for the asymmetric stateamm defined in the text.

T = 1 (see the diagram forT = 1.2) both the origin and the statemmm are stable, but
the latter has already moved towards the origin. We note that in contrast to the model
with unlinked patterns, it does not reach the origin since the transition (to the paramagnetic
phase) is first order.

Another illustrative set of diagrams is presented in figure 4. Here the initial conditions
are more general:m2 = (0.1, 0), m3 = (0.5, 0.0). In the first diagram forT = 0.1 an
attractormmm is present in the lower left and right corners. On the top in the middle the
statemm0 is located. It is a crossed state and a minimum at low temperatures. The overlap
m in this state depends onT in the same way as the overlap of a Mattis solution of the
standard Hopfield model does.
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Figure 4. Flow diagrams for the model with linked patterns at different temperatures. Filled
symbols stand for different states: a square formmm, a diamond for 000 and a crossed circle
for mm0.

For higherT this crossed state disappears but themmm states stay in nearly the same
place untilT = 1. Above, the origin is an attractor and themmm states start to move
towards the origin (see the diagram forT = 1.2). As explained above they do not reach
the origin.

The interesting conclusion from these figures is that the statemmm has a large basin
of attraction. The latter is, of course, somewhat reduced in the temperature region where
the stable state 000 also appears. Furthermore, the statemmm has a large overlap (recall
figure 1) with the embedded patterns.

Since the ATNN model with linked patterns seems to have very good retrieval properties
it is worthwhile to derive aβJ1 − βJ3 phase diagram. We first note that the fixed-point
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Figure 5. TheβJ1–βJ3 phase diagram of the ATNN model with linked patterns. The dark grey
area represents the 000 phase, the light grey area the full retrieval phasemml and the white area
the partial retrieval phase 00l. Heavy full curves indicate continuous transitions, heavy broken
curves discontinuous ones.

equations (6) for the simple Mattis states have the same form as those for the mean-field
Ashkin–Teller model. Because these states are always the global minima of the free energy
they determine the transition lines. Of course the meaning of the phases is different from
the standard Ashkin–Teller model. For the special case of one embedded pattern, i.e.p = 1,
with ξ1

i = η1
i = 1 both models are completely equivalent.

The ATNN βJ1–βJ3 phase diagram (for low loading of linked patterns) is presented
in figure 5. We distinguish the following phases. The dark grey area is the paramagnetic
000 phase. The light grey area is the full retrieval phase (for linked patterns) described by
the simple Mattis statemml (m 6= l when J1 6= J3). The white area represents a partial
retrieval phase, i.e. only patterns embedded in one part of the network are recalled by the
state 00l. The (heavy) full curves indicate second-order transitions, the (heavy) broken
curves discontinuous ones. We remark that the 000 state exists as a minimum up to the
light full curves, but outside the dark grey region its energy is higher than the energy of
the mml state. In part of the full retrieval phase, namely in the upper half of the phase
diagram, the crossed statemm0 exists. It is stable in the area above the light full and light
broken curves.

5. Conclusions

We have analysed a neural network version of the Ashkin–Teller spin-glass model for low
loading of patterns. Both the thermodynamic and dynamic properties have been considered,
especially for Mattis states which are the most interesting states from the point of view of
retrieval. Fixed-point equations as well as flow equations for the relevant order parameters
have been derived. Numerical results have been discussed illustrating the typical behaviour
of the network.

The following main conclusions can be drawn. For unlinked embedded patterns the
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Figure 6. The overlap as a function of a rescaledT for the statemmm in the ATNN model with
linked patterns (filled diamond) versus the overlap for the Mattis state in the Hopfield model
(empty diamond). Temperature scales refer to the Ashkin–Teller model (top) and the Hopfield
model (bottom).

behaviour of the model is much richer than in the case of the standard Hopfield model in
the sense that many different forms of stable Mattis states are possible. These states exist up
to T = 1 where a continuous transition occurs from the retrieval phase to the paramagnetic
phase. The corresponding flow diagrams are quite complicated but verify the existence of
this many attractors. However, none of these retrieval states has a bigger overlap than the
Mattis states of a corresponding Hopfield model. Hence the inclusion of the four-neuron
interaction term does not particularly improve the quality of retrieval.

For linked embedded patters interesting new features show up. The most important one
is that stable Mattis states of the formmmm appear. They have a very big overlap with the
embedded patterns, meaning that the pairs of patterns which are linked by the four-neuron
term are retrieved with a very high accuracy. Furthermore, they exist up toT = 1.213
and have a large basin of attraction. For temperatures 16 T 6 1.213 both these Mattis
states and the paramagnetic solution are local minima of the free energy such that their
basin of attraction is somewhat reduced. To verify then that this large overlapm is not just
a rescaled overlap of the corresponding Mattis state of a corresponding Hopfield model we
have made a comparison in figure 6. We clearly see the difference in shape in favour of the
ATNN. Further details of additional features of the ATNN model are given in aβJ1− βJ3

phase diagram (see figure 5).
In brief, the linked pairs are retrieved easily and with a high precision (simple states)

and the unlinked pairs may be retrieved (crossed states), but always with lower precision
than that of the linked ones. It is important to stress that the patterns which are linked can
be completely different. In principle, they are independent.
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[5] Boll é D, Rieger H and Shim G M 1994J. Phys. A: Math. Gen.27 3441
[6] Christiano P L and Goulart Rosa Jr S 1986Phys. Rev.A 34 730
[7] Moreira J V and Christiano P L 1992Phys. Lett.A 162 149
[8] Moreira J V and Christiano P L 1992J. Phys. A: Math. Gen.25 L739
[9] Nobre F D and Sherrington D 1993J. Phys. A: Math. Gen.26 4539

[10] Viana L and Martinez C 1995J. PhysiqueI 5 573
[11] Provost J P and Vallee G 1982Phys. Rev. Lett.49 409
[12] Amit D J, Gutfreund H and Sompolinsky H 1985Phys. Rev.A 32 1007
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